全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
21555 55
2017-11-19
        本人最近在学习金融数学,通过Google搜索到台湾交通大学 吴庆堂(Ching-tang Wu)老师的《财务数学》(台湾翻译而已)视频,该视频深入浅出地讲解了现在金融所需要的Brownian Motion、随机积分(ITO's Lemma, R-N Derivated, Girsanov Theorem)、随机微分方程、鞅(Martingale)等数学工具,同时讲解了discrete time和coutinuous time 的部分model。
        通过该课程的学习,个人收益颇多。鉴于论坛上并没有专门帖子介绍此课程,因此本人特将其贴出,供大家下载学习。这个视频课程网站的讲义、视频均可下载学习。
       如果可以上外网,Youtube上面也有视频合集,省去下载过程。
      《财务数学一》:http://ocw.nctu.edu.tw/course_de ... p;gid=1&nid=187
      《财务数学二》:http://ocw.nctu.edu.tw/course_de ... p;gid=1&nid=234


      如果无法打开上面网站,可可以去B站观看:
      http://www.bilibili.com/video/av3996026/

     如果无法打开上面网站下载课程讲义,我在帖子附件中已将其贴出,供大家下载学习。
     
金融数学 吴庆堂.zip
大小:(42.86 MB)

 马上下载

本附件包括:

  • Appendix A、Limits of Sequences of Numbers.pdf
  • Appendix B、Convergence of Sequences of Functions Stochastic Processes I.pdf
  • Appendix C、Distribution Functions.pdf
  • Appendix D、Convergence of Sequence of Functions Stochastic Processes II.pdf
  • Appendix E、Riemann-Stieltjes Integrals.pdf
  • Appendix F 、Characteristic Functions.pdf
  • Appendix G、Differntial Equations.pdf
  • Appendix H 、Convex Analysis.pdf
  • Chapter 0 Introduction.pdf
  • Chapter 1 Probability Theory.pdf
  • Chapter 10 Stochastic Differential Equations.pdf
  • Chapter 11 Some Basic Models.pdf
  • Chapter 12 Hedging.pdf
  • Chapter 13 Volatility.pdf
  • Chapter 2 Discrete-Time Martingales.pdf
  • Chapter 3 One-Period Model.pdf
  • Chapter 4 Multi-Period Model.pdf
  • Chapter 5 American Contingent Claim.pdf
  • Chapter 6 Measures of Risk.pdf
  • Chapter 7 Continuous-time Martingales.pdf
  • Chapter 8 Brownian Motions.pdf
  • Chapter 9 Stochastic Integrals.pdf
  • Financial Math.pdf



下面是课程大纲(Syllabus)

   


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-11-19 01:41:13
课程大纲
Objective  
This course is to make students understand and familiar with mathematical methods while studying Finance.
Outline  
Chapter        Overview
        Introduction
1        Probability Theory
       
        •        1.1 Probability space
•        1.2 Random variables
•        1.3 Expectation
2        Discrete-Time Martingales
        •        2.1 Conditional probability and conditional expectation
•        2.2 Discrete time Martingales
•        2.3 Martingale transform and Doob decomposition
3        One-Period Model
        •        Introduction
•        3.1 Portfolios
•        3.2 Derivative securities
•        3.3 Absence of arbitrage
•        3.4 No arbitrage and price system
•        3.5 Martingale measures
•        3.6 Pricing
•        3.7 Complete market model
1        Multi-Period Model
        •        Introduction
•        4.1 The market model
•        4.2 Arbitrage opportunities
•        4.3 Martingale measures
•        4.4 Arbitrage-free prices for European contingent claim
5        American Contingent Claim
        •        5.1 Stopping time
•        5.2 American claims
•        5.3 Arbitrage-free prices
6        Measures of Risk
        •        Introduction
•        6.1 Monetary measure of risk
•        6.2 Coherent and convex risk measures
•        6.3 Acceptance sets
•        6.4 Robust representation of coherent risk measure
•        6.5 Robust representation of convex risk measures
       
        •       

Unit        Overview
7        Continuous-Time Martingales
        •        7.1 Stochastic processes
•        7.2 Uniform integrability
•        7.3 Martingale theory in continuous-time
•        7.4 Local martingales
•        7.5 Doob-Meyer decomposition
•        7.6 Semimartingales
8        Brownian Motions
        •        8.1 Scaled random walk
•        8.2 Brownian motions
•        8.3 The Brownian sample paths
•        8.4 Exponential martingales
•        8.5 d-dimensional Brownian motions
       
9        Stochastic Integrals
        •        9.1 Construction of stochastic integrals with respect to martingales
•        9.2 Stochastic integrals with respect to semimartingales
•        9.3 Itô formula
•        9.4 Integration by parts
•        9.5 Martingale representation theorem
•        9.6 Girsanov theorem
•        9.7 Local times
10        Stochastic Differential Equations
        •        10.1 Examples and some solution methods
•        10.2 An existence and uniqueness result
•        10.3 Weak and strong solutions
•        10.4 Feynman-Kac theorem
11        Continuous-Time Models
        •        11.1 Market portfolios and arbitrage
•        11.2 Equivalent local martingale measures
•        11.3 Completeness
•        11.4 Pricing for attainable contingent claim
•        11.5 Black-Scholes-Merton formula
•        11.6 Parity relations
•        11.7 The greeks
12        Hedging
        •        12.1 Hedging strategy for the simple contingent claim
•        12.2 Delta and gamma hedging
•        12.3 Superhedging
•        12.4 Quantile hedging
6        Volatility
        •        13.1 Historical volatility
•        13.2 Implied volatility
Appendix         
        •        A. Limits of Sequences of Numbers
•        B.  Convergence of Sequences of Functions and Stochastic Processes I
•        C. Distribution Functions
•        D. Convergence of Sequences of Functions and Stochastic Processes II
•        E. Riemann-Stieltjes Integrals
•        F . Convex Analysis

Textbook  
•        S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.

References
•        T. M. Apostol: Mathematical Analysis, Second Edition
•        M. Baxter and A. Rennie: Financial Calculus.
•        T. Björk: Arbitrage Theory in Continuous Time.
•        K. L. Chung: A Course in Probability Theory, Second Edition.
•        F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.
•        J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.
•        H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
•        J. Jacod and Ph. Protter: Probability Essentials.
•        J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.
•        I. Karatzas: Lectures on the Mathematics of Finance.
•        I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second  Edition.
•        I. Karatzas and S. E. Shreve: Method of Mathematical Finance.
•        D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.
•        B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,S ixth Edition.
•        R. T. Rockafellar: Convex Analysis.
•        H. L. Royden: Real Analysis, Third Edition.
•        A.N. Shiryaev: Probability Theory, Second Edition.
•        S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
•        R. L. Wheeden and A. Zygmund: Measure and integral.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-11-19 05:50:05
谢谢楼主热心
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-11-19 07:13:21
xiongjc 发表于 2017-11-19 01:40
本人最近在学习金融数学,通过Google搜索到台湾交通大学 吴庆堂(Ching-tang Wu)老师的《财务数学 ...
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-11-19 08:49:02
感谢热心推荐好资源
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-11-19 10:57:20
作为看完过的分享个小经验,看各章节的视频前最好先把附录的视频看完
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群