摘要:鉴于SAR图像获取的困难,无法保证
机器学习算法时需要的大数据量训练样本,因此影响了识别结果。首次提出了应用虚拟样本来扩大SAR图像目标识别训练集,提高SAR图像目标识别率的方法。通过使用重采样算法,奇异值重构与轮廓波重构等方法构建虚拟样本,与原有样本组成训练集,并通过SVM支持向量机进行训练识别在MSTAR公共数据集上的识别实验结果表明,对于不同数量的实际训练样本,通过添加本文方法构建的虚拟样本扩大训练集后,SAR图像目标识别率均会得到提高,尤其在小样本的情况下,识别率提高非常显著。该文证实了虚拟样本应用于SAR图像目标识别的有效性。在样本数目有限时,添加虚拟样本对SAR图像目标识别性能具有明显的改善作用。
原文链接:http://www.cqvip.com//QK/94492X/201706/672538927.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)