摘要:为了提高软件缺陷预测的准确率,利用布谷鸟搜索算法(Cuckoo Search,CS)的寻优能力和人工神经网络算法(Artificial Neural Network,ANN)的非线性计算能力,提出了基于CS-ANN的软件缺陷预测方法。此方法首先使用基于关联规则的特征选择算法降低数据的维度,去除了噪声属性;利用布谷鸟搜索算法寻找神经网络算法的权值,然后使用权值和
神经网络算法构建出预测模型;最后使用此模型完成缺陷预测。使用公开的NASA数据集进行仿真实验,结果表明该模型降低了误报率并提高了预测的准确率,综合评价指标AUC(area under the ROC curve)、F1值和G-mean都优于现有模型。
原文链接:http://www.cqvip.com//QK/93231X/201702/671086275.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)