摘要:在对两种SVM学习算法(SMO和SVMlight)进行分析的基础上,提出了一种改进的基于集合划分和SMO的算法SDBSMO.该算法根据样本违背最优化条件的厉害程度将训练集划分为多个集合,每次迭代后利用集合信息快速更新工作集和相关参数,从而减少迭代开销,提高训练速度.实验结果表明该算法能很好地提高支持向量机的训练速度.
原文链接:http://www.cqvip.com//QK/91690X/200632/23216221.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)