全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
960 0
2017-12-28
摘要:随着微博等社交平台的兴起,如何针对微博数据进行产品命名实体识别成为了自然语言处理领域研究的热点之一,也是实现舆情监督和商业智能的基础.传统的命名实体识别技术没有考虑中文微博口语化、不规范等特点,且忽略了深层语义对命名实体识别的重要作用.因此,考虑中文微博的特殊性,提出一种融合全局上下文信息的词向量特征选择方法,分别采用主题模型和神经网络词向量聚类两种方法获取深层语义信息,并结合层叠条件随机场进行中文微博的命名实体识别.实验结果表明,基于词向量聚类的中文微博产品命名实体识别方法取得了较好的效果.

原文链接:http://www.cqvip.com//QK/90918A/201701/671401308.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群