摘要:为克服学习样本依赖于发动机精确模型的问题,提出了一种基于自组织神经网络的发动机智能故障诊断的方法,并运用故障特征提取的数据预处理方式,成功地对航空发动机气路部件的几种典型故障做出正确诊断.为验证网络的抗噪性能,引入了自联想
神经网络.研究表明,自组织网络可以脱离发动机模型,并且对测量噪声有良好的鲁棒性,能基本满足航空发动机故障诊断的要求,具有较好的工程应用前景.
原文链接:http://www.cqvip.com//QK/91925X/200301/7390241.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)