摘要:深度学习在计算机视觉、语音识别和自然语言处理三大领域中取得了巨大的成功,带动了人工智能的快速发展。将深度学习的关键技术应用于化学信息学,能够加快实现化学信息处理的人工智能化。化合物结构与性质的定量关系研究是化学信息学的主要任务之一,着重介绍各类深度学习框架(深层神经网络、卷积神经网络、循环或递归神经网络)应用于化合物定量构效关系模型的研究进展,并针对
深度学习在化学信息学中的应用进行了展望。
原文链接:http://www.cqvip.com//QK/72119X/201702/671809169.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)