全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
614 0
2017-12-30
摘要:准确地预测瓦斯涌出量对于指导矿井设计和安全生产有重要意义,而瓦斯涌出量是一个与自然因素及开采技术等多因素有关的非线性建模问题。鉴于传统神经网络方法解决非线性问题收敛速度慢,易陷入局部最优解的缺陷,笔者提出一种既充分利用小波变换的时频局部化性质,又能结合神经网络的自学习能力的小波神经网络预测瓦斯涌出量的方法,并建立了预测模型。在此基础上,采用Delphi语言,设计了小波/BP神经网络仿真器。通过实例分析表明该方法较传统神经网络收敛迅速。预测精度高。

原文链接:http://www.cqvip.com//QK/97423X/200602/21323759.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群