摘要:为提高电站经济性和机组运行效率,降低机组发电煤耗,求取电站机组运行参数最优值是关键技术。以往通过理论计算得到最优运行参数值是在设定的理想环境下得到的,在实际的电站运行过程中难以实现。而数据挖掘算法是从电站自身的历史数据中得到的最优运行参数值,电站机组能够很容易在实际运行中实现该值。通过对比近年来电站常用数据挖掘算法,总结出基于数据挖掘的电站优化运行的主要步骤为关联规则、数据离散化、运行工况划分、粗糙集知识约减。得出以下结论:模糊关联规则挖掘算法是电站数据挖掘中的最主要方法,能够适用于大多数的电站优化目标值挖掘;模糊聚类离散化能够克服边界划分过硬的问题,将电站中的连接参数离散化;粗糙集属性约减能够有效降低数据挖掘的参数维度,提高挖掘效率。同时指出基于
数据挖掘的电站优化运行算法将成为电站运行参数优化的主要研究方向。
原文链接:http://www.cqvip.com//QK/96750A/201507/665613036.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)