全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
752 0
2018-01-02
摘要:代价敏感学习算法的目的是最小化各种代价总和,与其他学习算法一样,它必须面对过度拟合这个挑战性问题,即分类器可以较好地拟合训练数据,但对测试或实际数据的效果较差。针对代价敏感学习的这些缺点,提出两个克服过度拟合的策略。第一个滤波技术策略针对TCSDT分类建立,滤波后的概率估计值被用于对每个分离属性的潜在误分类代价计算,并延缓潜在大误分类代价的分离属性的优先选择,最后,采用交叉验证方法决定m的值。第二个策略与基于标准错误的Laplace剪枝方法不同,阈值剪枝采用一个预先定义的阈值集合(跟代价有关)来确定决策树的一个叶节点是否被剪除。这两策略可独立或联合用于避免TCSDT分类的数据过度拟合。实验表明,所提出的两算法不但在代价敏感学习中有优势,在非代价敏感学习也具有优势,可以有效地减弱过度拟合,有很强的健壮性,UGI数据集实验结果显示算法的拟合能力平均优于存在方法10%以上。

原文链接:http://www.cqvip.com//QK/91580X/200906/32714112.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群