摘要:针对以往使用单一因素预测底板破坏深度误差较大的问题,基于开源数据挖掘工具Weka平台,以底板破坏因素为样本应用贝叶斯分类器、支持向量机、神经网络、决策树和随机森林模型实现对底板破坏深度数据的整理挖掘分析,从多因素角度出发完成对底板破坏深度的综合预测。平台应用结果表明,工作面斜长、埋深为破坏深度的主要影响因素;神经网络模型的节点错误率最低,决策树模型最高;神经网络和随机森林模型在详细的精度方面准确率达95%;总体分析对比
神经网络预测效果最优,能够较好实现对煤矿底板破坏深度的预测。
原文链接:http://www.cqvip.com//QK/91300A/201706/672381056.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)