全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
472 0
2018-01-05
摘要:城市建成区规模受社会、经济、城市环境等诸多因素影响,传统统计方法难以准确预测城市建成区的面积。人工神经网络具有良好的非线性映射逼近性能,在各类预测研究中得到了广泛的应用,尤其是BP神经网络。主成分分析可以在有效保留数据信息前提下对数据进行降维,它与BP神经网络的结合主要在数据输入端,通过减少输入层神经元个数,增强网络性能,提高预测精度。本文以北京市为例,综合运用主成分分析和BP神经网络方法建立预测模型,以1986~2003年数据为学习样本,以2004年数据为检验样本,对2005年北京市城市建成区面积进行模拟预测。预测结果表明,基于主成分分析的BP神经网络预测结果与实际值的相对误差为2.8%。比传统BP神经网络预测精度提高1.8个百分点,网络训练收敛速度也更快,其预测精度和效率都有不同程度的改善。

原文链接:http://www.cqvip.com//QK/96015A/200706/26530550.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群