全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
571 0
2018-01-06
摘要:提出一种将主成分分析和BP神经网络相结合的方法对测井资料进行岩性识别。首先将原始测井数据进行主成分分析,分析结果作为PCABP神经网络的学习样本进行训练,建立测井解释的PCA—BP神经网络岩性识别模型.并用该模型对测试样本进行识别。结果表明该方法同传统的BP神经网络相比.不仅简化了网络结构(网络的输入神经元个数由5个减少为2个),网络收敛速度也加快了21%.而且识别的准确率提高了25%。

原文链接:http://www.cqvip.com//QK/83326X/200803/28291317.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群