摘要:结合主成分分析与神经网络的优点,提出了主成分分析与神经网络相结合的煤耗氧速度预测模型.采用主成分分析法对原始输入变量进行预处理,选择输入变量的主成分作为神经网络输入,一方面减少了输入变量的维数,消除了各输入变量的相关性;另一方面提高了网络的收敛性和稳定性,同时也简化了网络的结构.通过实例验证,基于主成分的神经网络比一般
神经网络训练精度更高,学习时间更短,预测效果更优.
原文链接:http://www.cqvip.com//QK/96550X/200808/28050111.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)