摘要:在使用多分类器系统时,一种流行的方法是采用简单的多数投票策略来聚合多分类器。然而,当各个独立的分类器的性能不统一时,这种简单的多数投票规则会对分类结果造成负面影响。引入一种新的动态加权函数来聚合多个分类器,动态加权函数通过增加分类结果距离样本最近的分类器的权值来提高分类器的性能。在UCI
机器学习数据库中的几个现实问题数据集上的实验结果表明动态加权的多分类器聚合方法比简单的多数投票方法能取得更好的分类结果。
原文链接:http://www.cqvip.com//QK/81265X/201402/48992306.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)