全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
549 0
2018-01-24
摘要:情感分类是目前自然语言处理领域的一个具有挑战性的研究热点,该文主要研究基于半监督的文本情感分类问题。传统基于Co-training的半监督情感分类方法要求文本具备大量有用的属性集,其训练过程是线性时间的计算复杂度并且不适用于非平衡语料。该文提出了一种基于多分类器投票集成的半监督情感分类方法,通过选取不同的训练集、特征参数和分类方法构建了一组有差异的子分类器,每轮通过简单投票挑选出置信度最高的样本使训练集扩大一倍并更新训练模型。该方法使得子分类器可共享有用的属性集,具有对数时间复杂度并且可用于非平衡语料。实验结果表明我们的方法在不同语种、不同领域、不同规模大小,平衡和非平衡语料的情感分类中均具有良好效果。

原文链接:http://www.cqvip.com//QK/96983X/201602/669163906.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群