摘要:随着大数据时代的到来,各种数据挖掘和
机器学习方法被广泛地应用于异常流量检测。文中针对异常流量检测方法展开研究,提出了一种基于熵和改进的SVM多分类器的异常流量检测方法。该方法用熵值对网络流量的各个属性进行量化,将异常流量检测问题抽象为对不同类型流量的分类问题,并对传统的一对其余SVM多分类器进行改进。使用改进SVM多分类器对熵值量化后的流量进行分类判决,根据分类结果捕获异常。将该方法应用于实际的异常流量检测系统,并进行测试,结果表明,该方法对网络中常见的异常流量有很好的检测效果。
原文链接:http://www.cqvip.com//QK/97969A/201603/668092197.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)