摘要:连续属性值的离散化一直是
机器学习领域中殛待解决的关键问题之一,他对于提高后继学习算法的运行速度、降低算法的实际空间要求和时间消耗、提高学习结果的聚类能力等都具有极其重要的意义.本文首先分析了基于粗集模型的数据离散化方法的特点和基本思路,研究了候选断点重要性的衡量方式,在此基础上提出两种新的从候选集合中最终确定离散化断点的启发式算法.这两种算法考虑并体现了粗集理论的基本特点和优点,选择的断点都能够保证信息系统的分辨关系,并能够取得较理想的离散化结果.
原文链接:http://www.cqvip.com//QK/92166X/200203/6673315.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)