全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
379 0
2018-02-08
摘要:信息系统连续型属性值的离散化对决策规则或决策树的学习具有非常重要的意义。它能够提高系统对样本的聚类能力,增强系统抗数据噪音的能力,减少机器学习算法的时间和空间开销,提高其学习精度。粗集是有效的数据离散化工具。对基于粗集理论的数据离散化方法进行了深入研究,分析其特征,评述其研究进展,并通过仿真实验研究了几种典型的启发式离散化算法的性能。其结果对发展新的离散化技术或为特定应用选择合适算法都有参考价值。http://www.cqvip.com//QK/96514X/200606/23400482.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群