全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
800 0
2018-01-08
摘要:朴素贝叶斯是一种简单而高效的分类算法,但其条件独立性和属性重要性相等的假设并不符合客观实际,这在某种程度上影响了它的分类性能。如何去除这种先验假设,根据数据本身的特点实现知识自主学习是机器学习中的一个难题。根据Rough Set的相关理论,提出了基于条件信息熵的自主式朴素贝叶斯分类方法,该方法结合了选择朴素贝叶斯和加权朴素贝叶斯的优点。通过在UCI数据集上的仿真实验,验证了该方法的有效性。

原文链接:http://www.cqvip.com//QK/94832X/200704/24356921.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群