摘要:贝叶斯分类方法因具有严密的数学理论基础,于是成为一种简单而有效的数据挖掘方法;然而,贝叶斯分类器要求——条件独立性假设和每个属性权值为1,这极大降低了贝叶斯分类器的性能;针对贝叶斯分类器的局限性,文章提出了一种优化的贝叶斯分类算法;文中,首先利用粗糙集理论对待分类数据集进行属性约简,删除冗余属性;然后给出了属性权值的计算方法和公式,目的在于更准确地描述数据集的重要性和相关性;同时,通过weka3.6.2工具,以UCI
机器学习数据库中的数据集为测试数据,进行了对比测试;实验结果表明:OBCA具有较高的分类准确率。
原文链接:http://www.cqvip.com//QK/97801A/201201/40835275.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)