摘要:自动分类是数据挖掘和
机器学习中非常重要的研究领域.针对难以获得大量有类标签的训练集问题,提出了基于小规模训练集的增量式贝叶斯分类,给出增量式贝叶斯分类机理参数计算及其算法.对算法分两种情况处理:第一种情况是新增样本有类别标签,则利用现有分类器检验其类标签,如果匹配则保留当前分类器,否则利用新样本修正分类器;第二种情况是新增样本无类别标签,则利用现有分类器为其训练类标签,然后利用新样本来修正分类器.实验结果表明,该算法是可行有效的,比简单贝叶斯分类算法有更高的精度.增量式贝叶斯分类算法的提出为分类器的更新提供了一条新途径.http://www.cqvip.com//QK/91780X/200604/22778162.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)