摘要:提出应用遗传算法(GA)和模拟退火(SA)优化神经网络预测铁路营业里程.采用3层前馈神经网络实现铁路营业里程的时间序列预测,输入节点数为5,隐层节点数为8,输出节点数为1.对神经网络的连接权重和节点阈值的确定,采用GA和SA算法相结合的混合优化学习策略.两种算法结合时,SA算法处于外层,GA处于内层.GA采用实数编码,把要确定的神经网络节点连接权重和节点阈值作为基因串.数值计算结果表明混合优化的神经网络的学习速度和精度都比单纯BP算法得出的结果好.因此,用GA-SA混合优化的
神经网络预测铁路营业里程是可行的.
原文链接:http://www.cqvip.com//QK/95548X/200403/9676249.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)