摘要:针对单类数据的分类问题,提出一种基于支持向量数据描述(SVDD)的分类算法。该算法利用SVDD获得包含单类数据的最小球形边界,通过该边界对未知样本数据进行分类,同时采用可行方向方法求解边界优化中的二次规划问题,并在UCI
机器学习数据集上将该算法与LS—SVM算法进行比较。实验结果表明,该算法不仅获得了更高的分类准确率,而且具有较低的运行时间。
原文链接:http://www.cqvip.com//QK/95200X/200901/29310639.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)