摘要:支持向量机是Vapnik等学者在统计学习理论的基础上提出的一种新的
机器学习方法。针对支持向量机理论中的多类分类问题和对于噪音数据的敏感性,本文提出了一种模糊补偿多类支持向量机算法FC-SVM。该算法是在Weston等人提出的多类SVM分类器的直接构造方法中引入模糊补偿函数,针对每个输入数据对分类结果的两方面影响,将目标函数中的惩罚项不仅进行了模糊化,而且对于分类情况进行了加权补偿,并重构了优化问题及其约束条件,然后重构了Lagrange公式,给出了理论推导。在充分的数值实验基础上,将文中提出的方法应用于建设银行个人房贷的信用评估系统中,得到了较好的实验结果。
原文链接:http://www.cqvip.com//QK/92817X/200612/23360584.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)