全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
465 0
2018-01-10
摘要:支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的一种新型机器学习方法,由于它出色的学习分类能力和推广能力,广泛地应用于模式识别和函数拟合中。针对某型航空发动机整机振动过大的现象,提出了一种基于支持向量机(SVM)的整机振动故障诊断方法。首先介绍了SVM理论,然后根据SVM学习方法的结构风险最小化原则,对某型航空发动机已知的整机振动故障模式数据进行了训练和预测,并建立了基于SVM的航空发动机整机振动故障诊断模型。最后通过对已有故障模式进行诊断预测,证明该方法在航空发动机整机振动故障诊断方面具有良好效果。

原文链接:http://www.cqvip.com//QK/97556X/201002/33839744.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群