摘要:集成学习和特征选择是当前
机器学习领域中的研究热点.集成学习通过重复采样可产生个体学习器之间差异度,从而提高个体学习器的泛化能力,特征选择应用到集成学习可进一步提高集成学习技术的效果,该研究有3个方面:数据子集的特征选择、个体学习器的选择和多任务学习.该文对近几年集成学习中特征选择技术的研究进行回顾,尤其对以上3个方面的研究分别进行总结,提出一些共性的技术指导以后的研究.
原文链接:http://www.cqvip.com//QK/98351X/200705/25662504.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)