全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
514 0
2018-01-10
摘要:为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UC I机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。

原文链接:http://www.cqvip.com//QK/95079A/201007/34675480.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群