全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
788 0
2018-01-13
摘要:聚类算法是近年来国际上机器学习领域的一个新的研究热点。为了能在任意形状的样本空间上聚类,学者们提出了谱聚类和图论聚类等优秀的算法。首先介绍了图论聚类算法中的谱聚类经典NJW算法和NeiMu图论聚类算法的基本思路,提出了改进的自适应谱聚类NJW算法。提出的自适应NJW算法的优点在于无需调试参数,即可自动求出聚类个数,克服了经典NJW算法需要事先设置聚类个数且需反复调试参数δ才能得出数据分类结果的缺点。在UCI标准数据集及实测数据集上对自适应NJW算法与经典NJW算法、自适应NJW算法与NeiMu图论聚类算法进行了比较。实验结果表明,自适应NJW算法方便快捷,且具有较好的实用性。

原文链接:http://www.cqvip.com//QK/92817X/2017S1/74837465504849558349485753.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群