全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
527 0
2018-01-11
摘要:K均值聚类算法在数据挖掘、机器学习领域被广泛应用。但其初始聚类中心的选取对整个聚类效果会产生很大的影响,因此,如何合理地初始化K均值聚类算法成为重要的研究方向。提出一种基于数据内在密集性的自适应初始聚类中心选取方法。该方法分为两个过程,第一个过程给出数据密集性的定义,并基于数据密集性选出满足条件的候选初始聚类中心,第二个过程是对选出的候选初始中心进行后处理,使其个数与数据类一致。实验证明,提出的方法有如下优势:1)能够自主发现数据集中数据分布的密集性,并能够合理找出初始聚类中心;2)对离群点和噪声鲁棒;3)减少了K均值聚类算法的迭代步骤;4)易于实现。

原文链接:http://www.cqvip.com//QK/90976X/201402/48562934.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群