全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
481 0
2018-01-11
摘要:文中首先简单介绍了贝叶斯决策树方法的基本思想,该方法结合了贝叶斯分类的先验信息方法和决策树分类的信息增益方法的优点,加入贝叶斯节点弥补了决策树不能处理具有二义性或存在缺失值数据的缺点。在此基础上,文中设计了一种基于朴素贝叶斯方法和ID3算法的贝叶斯决策树算法——NBDT-ID3算法,并给出了该算法的设计及分析过程。然后将该算法应用到高职招生数据挖掘中,对新生报到情况进行分析与预测,并在Matlab环境下进行了实验验证。实验结果表明,NBDT-ID3算法在付出一定时间代价的情况下,不仅可以获得更高的分类精度,而且在处理二义性、不完整或不一致数据方面具有更好的效果。

原文链接:http://www.cqvip.com//QK/97969A/201604/668612351.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群