全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
445 0
2018-01-12
摘要:支持向量机是一种新型机器学习算法,它基于结构风险最小化准则取得较小的实际风险,有效提高了泛化能力,具有理论严密、适应性强、全局优化等特点,在模式识别和回归问题等方面应用广泛。以某地区历史负荷数据为输入,通过人群搜索算法对支持向量的各项参数进行寻优计算,得到最优的参数取值,然后把最优参数代入到SVM预测模型中,得到人群搜索算法的支持向量机(SOA-SVM)模型,利用此模型对某地区未来24小时的负荷进行短期预测。通过算例验证,利用SOA-SVM预测的精度要比BP神经网络和PSO-SVM的精度要高,所以说明用此方法进行短期负荷预测是有效和可行的。

原文链接:http://www.cqvip.com//QK/92179X/201608/668750377.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群