摘要:针对以往进行藏文情感分析时算法忽略藏文语句结构、词序等重要信息而导致结果准确率较低的问题,将深度学习领域内的递归自编码算法引入藏文情感分析中,以更深层次提取语义情感信息。将藏文分词后,用词向量表示词语,则藏文语句变为由词向量组成的矩阵;利用无监督递归自编码算法对该矩阵向量化,此时获得的最佳藏文语句向量编码融合了语义、语序等重要信息;利用藏文语句向量和其对应的情感标签,有监督地训练输出层分类器以预测藏文语句的情感倾向。在实例验证部分,探讨了不同向量维度、重构误差系数及语料库大小对算法准确度的影响,并分析了语料库大小和模型训练时间之间的关系,指出若要快速完成模型的训练,可适当减小数据集语句条数。实例验证表明,在最佳参数组合下,所提算法准确度比传统
机器学习算法中性能较好的语义空间模型高约8.6%。
原文链接:http://www.cqvip.com//QK/93336B/201707/7000242193.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)