全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
633 0
2018-01-13
摘要:光伏发电系统的超短期功率预测对电网调度的计划安排及光伏发电系统的优化运行具有重要意义。机器学习、人工智能领域的技术进步为精细化分析光伏功率预测影响因素并提高光伏预测精度提供了有效途径。提出一种基于深度结构网络模型的光伏超短期功率预测方法,首先根据光伏发电系统的机理特征,分析深度学习算法处理光伏预测问题的可行性;然后提出基于深度学习算法的光伏功率预测模型,采用基于受限玻尔兹曼机的深度置信网络提取深层特征完成无监督学习过程,采用有监督BP神经网络作为常规拟合层获得预测结果;并立足于实际需求,建立含离线训练和在线预测的双阶段光伏发电预测系统,分析天气信息及历史信息的输入属性;最后利用光伏发电系统的实际运行数据进行仿真,验证算法准确性和有效性,通过比较深度结构是否包含无监督学习过程,说明其在预测中的重要性。

原文链接:http://www.cqvip.com//QK/95419X/201706/672421363.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群