摘要:集成学习可以提高分类器的泛化性能,这种方法已经成为
机器学习的重要研究方向之一.通常,集成学习主要由2部分构成,即个体生成方法及结论生成方法.从集成学习的差异性角度出发,对集成学习中个体的构造方法及结论生成方法进行了分析与研究,对集成学习中存在的问题及未来的研究方向进行了探讨.
原文链接:http://www.cqvip.com//QK/91080X/200704/25323845.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)