全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
705 0
2018-01-15
摘要:传统机器学习要求训练样本和测试样本具有相同分布的假设在实际应用中难以满足,为解决这种问题,迁移学习的研究近年来逐渐兴起。其中,基于聚类分析与重采样的迁移学习框架不需要直接估计域分布,且能够修正不同类型的域间差异,但其所采用的聚类算法对参数选择的鲁棒性及不同分布数据的适应性较差,并不能很好地适用于挖掘数据结构信息。为此,该文提出一种基于模糊近邻密度聚类与重采样的迁移学习算法。该方法对不同分布形状和密度的数据具有较好的鲁棒性并能够发现更多的近邻结构信息,能够从源域中迁移更多的有用知识用于目标域的学习。在公共数据集上的实验结果表明所提出的迁移学习方法具有更好的性能。

原文链接:http://www.cqvip.com//QK/92416X/201606/669078680.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群