摘要:研究
神经网络理论用于内燃机排放预测模型时学习样本的选取方法,针对内燃机工况变化的特点,对传统的正交设计法进行了改进,提出并验证了用考虑因素边界变化的正交设计法选取样本的可行性.研究结果表明,模型的预测精度随着正交表位级的增加而提高,即使只用3位级的正交表设计样本,也能建立预测误差低于5.7%的内燃机稳态排放特性预测模型,具有试验工作量小、简便易行的特点.
原文链接:http://www.cqvip.com//QK/92056X/200206/7121266.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)