全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
732 0
2018-01-16
摘要:针对当前基于机器学习的早期阿尔茨海默病(AD)诊断中训练样本不足的问题,提出一种基于多模态特征数据的多标记迁移学习方法,并将其应用于早期阿尔茨海默病诊断。所提方法框架主要包括两大模块:多标记迁移学习特征选择模块和多模态多标记分类回归学习器模块。首先,通过稀疏多标记学习模型对分类和回归学习任务进行有效结合;然后,将该模型扩展到来自多个学习领域的训练集,从而构建出多标记迁移学习特征选择模型;接下来,针对异质特征空间的多模态特征数据,采用多核学习技术来组合多模态特征核矩阵;最后,为了构建能同时用于分类与回归的学习模型,提出多标记分类回归学习器,从而构建出多模态多标记分类回归学习器。在国际老年痴呆症数据库(ADNI)进行实验,分类轻度认知功能障碍(MCI)最高平均精度为79.1%,预测神经心理学量表测试评分值最大平均相关系数为0.727。实验结果表明,所提多模态多标记迁移学习方法可以有效利用相关学习领域训练数据,从而提高早期老年痴呆症诊断性能。

原文链接:http://www.cqvip.com//QK/94832X/201608/669696637.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群