摘要:为获取领域本体并量化概念关系的可信度,提出了一种基于Web挖掘的学习模型.通过可扩展的模式集和分布语义模型获取本体主干,使用关联规则发现概念间的一般关系,对候选本体进行修剪和合并.模式可信度、概念语义距离与关联特征决定了概念间关系的可信度.通过'文本分析-本体获取-文本扩充'的迭代过程,优化模型参数和阈值.该模型解决了现有本体学习方法对词典或核心本体的依赖性、以及不能对关系进行可信度量化的问题.实验证明了所提出模型的有效性.
原文链接:http://www.cqvip.com//QK/93884X/2005S1/1000293419.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)