摘要:如今信息量呈爆炸式增长,自然语言处理得到了越来越广泛的重视。传统的自然语言处理系统过多地依赖昂贵的人工标注特征和语言分析工具的语法信息,导致预处理中语法信息的错误传递到系统训练和预测过程中。因此,深度学习的应用受到了学者们的关注。因为它能实现端对端预测并尽可能少地依赖外部信息。自然语言处理领域流行的深度学习框架为了更好地获取句子信息,采用multi-gram策略。但不同任务和不同数据集的信息分布状况不尽相同,而且这种策略并没有考虑到不同n-gram的重要性分布。针对该问题,提出了一种基于
深度学习的自适应学习multi-gram权重的策略,从而根据各n-gram特征的贡献为其分配相应的权重;并且还提出了一种新的multi-gram特征向量结合方法,大大降低了系统复杂度。将该模型应用到电影评论正负倾向判断和关系分类两种分类任务中,实验结果证明采用的自适应multi-gram权重策略能够大大改善模型的分类效果。
原文链接:http://www.cqvip.com//QK/92817X/201701/671087346.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)