摘要:提出了一种基于集成学习机制与类指示器的文本分类方法.该方法利用AdaBoost.MH算法框架,在每一轮次中,自适应地计算类指示度,通过加权组合所有成员类指示度,获得对理想类指示度的一种逼近.利用最终的类指示度所得到的分类器不仅简单、易于更新,而且泛化能力强.在标准语料集TanCorp-12上的实验表明,该方法适用于对分类效率要求较高的实时应用,同时可以利用集成学习进行某些知识的精确学习,并将这些知识用于弱分类器,从而实现简单高效的分类.
原文链接:http://www.cqvip.com//QK/95054X/201004/33816593.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)