摘要:提出一种基于概率校正和集成学习的
机器学习模型,用来预测患者肠癌肝转移的概率。首先将AdaBoost和Class-bal-anced SVM的概率结果进行校正,再将其结果和Logistic回归的预测结果进行集成,获得最终的预测结果。预测模型在复旦大学附属肿瘤医院的肠癌患者数据集上与其他算法如AdaBoost、Class-balanced SVM、Logistic回归算法进行了比较,结果显示该模型具有更好的AUC性能,更适合于医生的临床辅助诊断。模型的AUC性能在UCI数据集上进一步得到了验证。
原文链接:http://www.cqvip.com//QK/90976X/201109/39243745.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)