摘要:针对基于经验风险最小化的神经网络存在模型结构较难确定和过学习的问题,根据时用水序列具有周期性和趋势性的特点,建立了基于支持向量机的时用水量预测模型.支持向量机采用结构风险最小化准则,在最小化学习误差的同时缩小模型泛化误差的上界,因此具有较强的泛化能力.此外,支持向量机通过将
机器学习问题转化为二次规划问题,可获得全局最优解.实例分析结果表明,与基于BP网络的预测模型相比,基于支持向量机的时用水量预测模型建模速度更快,预测精度更高.http://www.cqvip.com//QK/93046A/200704/25025849.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)