全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
590 0
2018-02-08
摘要:针对大型支持向量机(SVM)经随机投影特征降维后分类精度下降的问题,结合对偶恢复理论,提出了面向大规模分类问题的基于对偶随机投影的线性核支持向量机(drp-LSVM)。首先,分析论证了drp-LSVM相关几何性质,证明了在保持与基于随机投影降维的支持向量机(rp-LSVM)相近几何优势的同时,其划分超平面更接近于用全部数据训练得到的原始分类器。然后,针对提出的drp-LSVM快速求解问题,改进了传统的序列最小优化(SMO)算法,设计了基于改进SMO算法的drp-LSVM分类器。最后实验结果表明,drp-LSVM在继承rp-LSVM优点的同时,减小了分类误差,提高了训练精度,并且各项性能评价更接近于用原始数据训练得到的分类器;设计的基于改进SMO算法的分类器不但可以减少内存消耗,同时可以拥有较高的训练精度。http://www.cqvip.com//QK/94832X/201706/672299923.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群