全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
648 0
2018-01-30
摘要:基于国家粮食安全预警系统的开发项目,针对我国粮食年产量预测中精度差和波动大的问题,分析了逐步回归、BP神经网络和GM(1,N)灰色系统3种常用预测方法的预测能力。根据能够计量和具有农学意义2个原则。选择了粮食作物播种面积、化肥施用量、粮食作物有效灌溉面积等12个重要的粮食年产量影响因子,用上述3种方法构建预测模型。在建模样本相同的情况下,结果显示,BP神经网络方法5年期拟合平均相对误差为1.44%,连续5年逐年预测平均相对误差可达到2.89%,这2个性能均优于其他2种方法,可以较好地应用于粮食安全预警系统.笔者最后探讨了对BP神经网络进一步优化的方法。http://www.cqvip.com//QK/90547A/200604/22493273.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群