摘要:针对网络系统非线性、多变量、时变性等特点,提出一种改进的Elman神经网络模型。在该模型的训练过程中引入了季节周期性学习方法,并对某高校主干网络出口流量进行实验检测。实验结果表明,该模型具有良好的预测效果,相对于传统线性模型、BP神经网络模型及标准Elman
神经网络模型具有更高的预测精度和更好的自适应性。最后,通过自适应边界值方法进行检测,能够及时发现异常流量行为,说明该模型应用于网络流量预测是可行、有效的。http://www.cqvip.com//QK/94832X/201010/35276490.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)