摘要:径流中长期预报长期以来一直都是人们关注的热点研究问题。现行的径流预报方法很多,传统的有时间序列法,多元回归分析法等,这些方法虽然简单易用,但是如果预报对象提供的样本容量偏小或者因子选择不够合理.都会造成预报精度偏差过大,难于有效的指导工程应用。鉴于此,本文提出一种改进的采用局部回归的Elman
神经网络方法,并应用到凤滩水库优化调度的径流预报中。结果表明.与回归分析法、BP网络相比较,该方法不仅提高了算法的效率,而且提高了预报的精度,在径流预报中具有有效性和优越性。http://www.cqvip.com//QK/95690X/200601/22290363.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)