全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
596 0
2018-02-02
摘要:流量信号是热工过程中非常重要的一个信号。由于流量信号存在着非线性、随机性和易受干扰的特点,很难建立起一个准确的测量模型,如传统的3种圆管紊流流速分布的近似模型,基于这些模型的传统测量方法很难测量出准确的流量值。该文提出的基于径向基函数(RBF)神经网络的流量测量模型,采用了带有遗忘因子的梯度下降算法来确定隐层基函数中心的位置和输出层权值的大小。计算结果表明这种模型计算量小、精度高,且算法简单实用。实验结果说明,基于这种模型的流量测量精度较以往模型有很大提高。http://www.cqvip.com//QK/90021X/200601/21498734.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群