全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
897 0
2018-02-03
摘要:位置数据的高维特性及其数据海量的特点,使得对位置数据的挖掘较为困难。为解决这一难题,首先对高维位置数据采用基于时空约束的频率剪枝算法进行数据清洗;然后设定时间维上兴趣时间段的约束条件,提取兴趣位置点;再根据欧式距离划分与聚类划分的原理相似性,引入K-Means聚类,实现对车主地理位置关系的挖掘。通过试验可以看出,该方法较为简便的实现了对邻里、同事关系的挖掘,结果符合该区居民的地理位置分布情况,证明了该方法的适用性。http://www.cqvip.com//QK/97519A/201602/668746755.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群