全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
775 0
2018-02-04
摘要:针对气液两相流压差波动信号的非平稳特征和BP神经网络学习收敛速度慢、易陷入局部极小值等问题,提出了一种基于经验模态分解(empirical mode decomposition, EMD)和概率神经网络的流型识别方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(intrinsic mode function,IMF)之和,再选取若干个包含主要流型信息的IMF分量进行进一步分析。由于流型转变时,压差波动信号各频带的能量会发生变化,因而可以从各IMF分量中提取能量特征参数作为神经网络的输入参数来识别流型。对水平管内空气-水两相流4种典型流型的识别结果表明,EMD能量比小波包能量特征具有更高的流型识别率,可以准确、有效地识别流型。http://www.cqvip.com//QK/90021X/200717/24625657.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群